CONDIÇÃO DE ALINHAMENTO DE TRÊS PONTOS

1. Conhecendo os pontos A, B e C, verifique, em cada item, se pertencem à mesma reta:

(a) A(3, 2), B(0, 1) e C(3, 4)

(b) A(3, 1), B(0, 5) e C(1, 2)

(c) A(2, 5), B(5, 6) e C(8, 7)

(d) A(1, 1), B(2, 1) e C(3, 2)


2. Verifique se os pontos A, B e C são colineares nos seguintes casos:

(a) A(0, 2), B(1, 3) e C(1, 1)



 
(b) A(1, 2), B(2, 1 ) e C(3, 3)


(c) A(2, 1), B(3, 2) e C(0, 1)


(d) A(0, 0), B(1, 1) e C(2, 2)
             
    3.   Verifique se os pontos A, B e C estão alinhados:

    a) A(0, 2), B(3, 1) e C(4, 5)
    b) A(2, 6), B(4, 8) e C(1, 7)
    c) A(1, 3), B(2, 4) e C(4, 10)

    4)  Determine, em cada item, a abscissa xB do ponto B, de tal forma que A, B e C pertençam à mesma reta.

     a)  A(3, 7), B(x, 3) e C(5, −1)

     b)  A(3, 5), B(x, 1) e C(1, −3)
     
    5.   Os pontos A(x, 3), B(−2, −5) e C(−1, −3) são colineares. De- termine o valor de x.

 




GABARITO:

     1. (a) pertencem à mesma reta.
(b)    não pertencem à mesma reta.
(c)    pertencem à mesma reta.
(d)    não pertencem à mesma reta.

    2.  (a) são colineares.
(b)    não são colineares.
(c)    são colineares.
(d)    não são colineares.

    3.  (a)  não estão alinhados.
(b)    estão alinhados.
(c)    não estão alinhados. 

4.   (a) xB = 4
      (b)    xB = 2
      
  5. x = 2